lunes, 7 de noviembre de 2022

Vector Spaces


  • (introduction)
  • (vector spaces)
    • (def)
    • (theorem 1)
  • (examples of vector spaces)
    • (space Rn)
    • (polynomial space P(t))
    • (polynomial space Pn(t))
    • (matrix space Mmn)
    • (function space F(x))
    • (fields and subfields)
  • (linear combinations, spanning sets)
    • (example 1,2)
    • (spanning sets)
    • (example 3, 4, 5)
  • (subspaces)
    • (def)
    • (theorem 2)
    • (example 6, 7)
    • (intersection of spaces)
    • (theorem 3)
    • (solution space of a homogeneous system)
    • (theorem 4)
  • (linear span, row space of matrix)
    • (theorem 5)
    • (example 8)
    • (row space of a matrix)
    • (theorem 6, 7, 8, 9)(corollary)(example 9)
  • (linear dependence or independence)
    • (def)
    • (example 10)
    • (linear dependence in R3)
    • (linear dependence and linear combinations)
    • (lemma 10)
    • (linear dependence and echelon matrices)
    • (theorem 11)
  • (basis and dimension)
    • (def A)
    • (def B)
    • (theorem 12)
    • (lemma 13)
    • (examples of basis)
      • (vector space Kn)
      • (vector space M=Mrs of all rs matrices)
      • (vector space Pn(t) of all polynomials degree <= n)
      • (vector space Pn(t) of all polynomials)
    • (theorem of basis)
      • (theorem 14, 15, 16)
      • (example 11)
    • (dimensions and subspaces)
      • (theorem 17)
      • (example 12)
  • (application of matrix, rank of a matrix)
  • (sums and direct sums)
  • (coordinates)

(introduction)(vector space)(examples of vector space)(linear combinations, spanning sets)(subspaces)(linear span, row space of matrix)(linear dependence or independence)(basis and dimension)(application of matrix, rank of a matrix)(sums and direct sums)(coordinates)(solved problems)(supplementary problems)(answers to supplementary problems)

No hay comentarios.:

Publicar un comentario