- (introduction)
- (vector spaces)
- (def)
- (theorem 1)
- (examples of vector spaces)
- (space Rn)
- (polynomial space P(t))
- (polynomial space Pn(t))
- (matrix space Mmn)
- (function space F(x))
- (fields and subfields)
- (linear combinations, spanning sets)
- (example 1,2)
- (spanning sets)
- (example 3, 4, 5)
- (subspaces)
- (def)
- (theorem 2)
- (example 6, 7)
- (intersection of spaces)
- (theorem 3)
- (solution space of a homogeneous system)
- (theorem 4)
- (linear span, row space of matrix)
- (theorem 5)
- (example 8)
- (row space of a matrix)
- (theorem 6, 7, 8, 9)(corollary)(example 9)
- (linear dependence or independence)
- (def)
- (example 10)
- (linear dependence in R3)
- (linear dependence and linear combinations)
- (lemma 10)
- (linear dependence and echelon matrices)
- (theorem 11)
- (basis and dimension)
- (def A)
- (def B)
- (theorem 12)
- (lemma 13)
- (examples of basis)
- (vector space Kn)
- (vector space M=Mrs of all rs matrices)
- (vector space Pn(t) of all polynomials degree <= n)
- (vector space Pn(t) of all polynomials)
- (theorem of basis)
- (theorem 14, 15, 16)
- (example 11)
- (dimensions and subspaces)
- (theorem 17)
- (example 12)
- (application of matrix, rank of a matrix)
- (sums and direct sums)
- (coordinates)
(introduction)(vector space)(examples of vector space)(linear combinations, spanning sets)(subspaces)(linear span, row space of matrix)(linear dependence or independence)(basis and dimension)(application of matrix, rank of a matrix)(sums and direct sums)(coordinates)(solved problems)(supplementary problems)(answers to supplementary problems)
No hay comentarios.:
Publicar un comentario